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ABSTRACT 

 

Experimental testbeds play an important role in spearheading the advancements in any given 

field, be it technology testbeds, energy testbeds, manufacturing testbeds or transportation 

testbeds. Each of the testbeds has their own resources and capabilities but a lot more can be 

achieved if they are not as disconnected as they are. When two or more testbeds form a 

federation, the federated testbed offers more in terms of functionality and resources, thereby 

opening more possibilities and avenues of research. This thesis is based on the federation of a 

cyber-physical security testbed located in Iowa State University, PowerCyber, to a cyber-

security testbed located in University of Southern California, DETERLab. This work is 

meant to address the milestones and challenges pertaining to the implementation, 

configuration and use-case scenarios of a Federated Testbed of this nature. 

This thesis primarily discusses the architectural design of the proposed Federated Testbed 

and discusses the milestones involved in its implementation. Further, this work also portrays 

the functionality of the Federated Testbed post-implementation through a use-case scenario, 

in order to showcase the experimental capabilities of the testbed. This work also goes on to 

evaluate the Federated Testbed’s metrics in terms of latency and volume of packet loss 

between the two testbed environments, PowerCyber and DETERLab and also compares the 

results to previous results in a non-federated environment. Finally, future work is suggested 

and conclusions are listed. 
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CHAPTER 1  

BACKGROUND 

 

Smart Grid – Power Infrastructure of the Future and its Vulnerabilities 

Over the last few years, the power infrastructure in the country has had a vital facelift in 

terms of reliability, efficiency and resiliency and is on the path of transforming into a “smart 

grid”. Steps are being taken to digitize large parts of the power grid to allow for two-way 

digital communication in place of the primitive one-way electromechanical power grid. 

While doing this brings a more sustainable power grid in the future, it also opens up new 

interdependencies and vulnerabilities. Integrating information technologies is essential to 

building a smart grid, but it is even more important to devise effective strategies to secure the 

computing and communication networks that form the core of the envisioned electric power 

infrastructure. 

According to a report presented by National Institute of Science and Technology (NIST) [1] 

in 2010, the following were listed as the key points in the cyber-security strategy for smart 

grids –  

1. Prevention – Required steps should be taken to perform continuous assessment of the 

grid components and ensure that the risk due to threats and vulnerabilities are 

minimum. 

2. Detection – Action should be taken to detect anomalous behavior, intrusions, 

malicious code and events that may disrupt the normal functioning of the electric 

grid. 
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3. Response – Responsive measures should be taken to address immediate effects of an 

unforeseen incident, such as avoiding or reducing loss of lives and property.  

4. Recovery – In the case of an incident, measures should be taken to restore the smart 

grid to its normal operating conditions as soon as possible. 

In order to devise effective strategies to secure the smart grid, it is not wise to experiment on 

a real smart grid infrastructure. It is necessary to have an environment to that mimics a real 

smart grid environment and that can support researchers to perform attack-defense analysis 

and vulnerability assessment. This throws into relief, why Cyber-Physical Security testbeds 

are of growing importance.  

PowerCyber – A Cyber-Physical Security Testbed 

 

PowerCyber [2] is a smart grid testbed whose vision is to make significant contribution to 

ensure the security of critical power infrastructure against sophisticated cyber-attacks. With 

the use of automated control systems, i.e., use of the cyber network for grid communication, 

increasing in the electric power grid, it has become a challenge to protect the grid 

infrastructure from cyber threats. The attacks on grid infrastructure belong to a specific set of 

cyber-attacks. While the attacks take place on the cyber layer, the target of these attacks is 

not cyber devices but is the physical components of the grid. PowerCyber research is focused 

on Cyber-Physical Security, i.e., finding vulnerabilities for these specific set of cyber-attacks 

and includes impact estimation of such attacks and methods of mitigating such attacks. 

Architecture 

 

The architecture of PowerCyber consists of three entities –  

1. Control System 
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2. Physical System 

3. Cyber Layer 

 

Figure 1 PowerCyber Architecture 

Control System 

The control of the grid is distributed between the functions of the control center and the 

functions of the substations. 

Control Center is a combination of two individual control centers, which communicate to 

each through a common database which contains information regarding the communication 

specifications of individual substations and the physical devices they interact with. It serves 

as the SCADA server and enables SCADA communications with substations. It performs the 

SCADA functions of the grid such as device status indication, measurement collection and 

broadcasting operator commands to field devices. 

Substation consists of an RTU and Intelligent Electronic Devices (IEDs).  The substations 

interface to the power system simulations in the environment. The IEDs act as over-current 

protection relays and can pass on current and voltage measurements in the transmission lines 
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to the RTUs. The RTUs accumulate this data and send it to the control center. Substations in 

the environment are of two kinds – 1) dedicated RTUs connected to physical IEDs, and 2) 

virtualized RTUs connected to virtual IEDs which are modeled by the power system 

simulation. 

Physical System 

The physical system of the testbed is deployed by the Real-Time Digital Simulator (RTDS) 

and OPAL RT. Both of them provide the testbed with the capability of performing real-time 

power system simulations and also allow integration with physical hardware. The power 

system model that they currently simulate is the Western Electricity Coordinating Council 

(WECC) 9-bus model. The real-time capabilities of the RTDS and OPAL RT allow the 

simulation to mimic the physical response characteristics of power system equipment in 

various scenarios. 

Communication 

The communication layer is the most crucial part of the grid, seamlessly integrating the 

physical system and the cyber components. 

PowerCyber uses industry standard communication protocols, similar to the ones used in real 

smart grid environments. The communication scheme follows the Supervisory Control and 

Data Acquisition (SCADA) system. 

The communication between the control center and substation uses the wide-area DNP3 

protocol. The DNP3 protocol communication takes place over IP. 
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In the substation, the RTU and the IEDs communicate through the IEC 61850 protocol to 

transfer commands and status information. IEC 61850 GOOSE messages are casted over the 

Ethernet to facilitate power system protection mechanisms. These allow the IEDs to talk to 

each other with a very high response rate. Manufacturing Message Specification (MMS) 

protocols are used to transfer analog and binary values between the RTU and IEDs. 

Research Applications 

PowerCyber’s multi-disciplinary environment gives way to the multiple research 

applications. 

 Vulnerability Research – Inspect weaknesses within the environment 

 Impact Analysis – Explore cyber-attack impact on physical systems 

 Mitigation Research – Find mitigation strategies and verify their effectiveness 

 Cyber-Physical Metrics – Develop metrics combining cyber-physical properties 

 Data and Models Development – Exploration of innovative security approaches 

 Security Validation – Evaluation of security posture of the system for self-assessment 

and compliance requirements 

 Interoperability – Evaluation of how products support and connect with real-world 

systems 

 Cyber Forensics – Explore ways to detect cyber-attacks specific to industry protocols 

and field devices 

 Operator Training – Providing operators interaction to the power system controls 

during simulated cyber-attacks. 
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DETERLab – A large-scale Cyber Security Experimentation Testbed 

The DETER project[3] was kicked off in 2004 at the Information Sciences Institute in 

University of Southern California, with the intention to provide researchers a platform to 

conduct cyber-security experiments within a controlled environment. It was built upon 

Emulab software, offering a wide range of tools and platforms for cyber-security 

experimentation. DeterLab experiments emulate real-world network complexity, allowing 

researchers to choose their environment to conduct sophisticated networking and cyber-

security experiments. 

The DETER testbed is laid out across University of Southern California and University of 

California at Berkeley, consisting of about 400 general purpose computers and 10 FPGA-

based reconfigurable hardware elements, enabling a dynamically reconfigurable switched 

network. 

Experiment Modeling 

DeterLab experiments allow users to describe their environment by creating network 

topology and complexity of their need and let them generate, route and decide the bandwidth 

of their traffic in every section of the experiment. Typically, as far as the experimenter is 

concerned, every experiment has a life cycle that contains the following stages –  

1. Design 

2. Instantiation 

3. Execution 

4. Analysis 
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Figure 2 Experiment Cycle in DeterLab [3] 

 

This provision from DeterLab makes it easier for users to focus on the design and 

running of their experiments and not worry about the backend events happening within 

DETER. 

In the backend, once the user creates an experiment, DeterLab allocates resources to the 

experiment model by leveraging the DeterLab “Containers” System [3]. Depending on the 

modeled experiment, the Containers System provides experiment resources of varying 

scale and fidelity, i.e. allotting whole computers as high fidelity when necessary and 

virtual machines when high resolution is not necessary, making the experiment scalable 

and dynamic for the experimenter. 
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Figure 3 DETER Containers System [4] 

Custom Modeling of Experiment Nodes 

The nodes within DeterLab are designed to allow users to choose what exactly they want 

to do with them. From choosing to OS of nodes to choosing startup applications and 

running custom initiation scripts, DeterLab allows users to fully customize each node to 

suit their need. 

By default, DeterLab offers the following OSes to run on nodes –  

1. Free BSD 8 and Free BSD 9 

2. CentOS 5 and CentOS 6 

3. KALI 1 

4. Ubuntu 10.04, 11.04, 12.04 

5. Windows XP SP3 

Further, uses can use RPMs or TARballs to add custom features to any node at the time 

of design. If the customizations cannot be contained within a TARball, then the users can 

also create their custom OS and upload it to nodes as needed. 
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Example Experiment Topology 

Each experiment created within DeterLab involves, designing the network topology in an 

NS file or using the DeterLab GUI that allows drawing the topology. 

After placing nodes as needed, users can load them with the required OSes and get them 

to run custom TARs within. In case of an NS file, these parameters are filled in while 

creating the node itself. 

Each experiment contains a node named ‘control’ which is not connected to topology but 

is part of the environment and is the node through which users control their experiment. 

 

Figure 4 DETER Experiment Topology 

Further, users can define the link characteristics and delay characteristics for each part of 

the network and gain total control over the experiment. 

Motivation for Testbed Federation 

Testbed federation is being highly encouraged in the research community. Federation 

provides testbeds with expanded functionality. Especially in the case of cyber-security and 

cyber-physical security testbeds, such as PowerCyber and DeterLab, federation provides a 
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higher level of experimentation. Some of the motivations of putting together a Federated 

Cyber-Physical Testbed are as follows –  

1. Provides scope real-time wide-area experimentation 

2. Provides scalability to the cyber-physical environment as the cyber network is larger 

after federation. 

3. Resource-sharing removes limitations in terms of hardware for experimentation and 

saves cost. 

4. Larger cyber-physical systems can be spawned for experimentation as there is almost 

no limitation in terms of number of nodes, after federation. 

5. A large federation of testbeds can potentially be the platform for the research 

community to perform remote experimentation, in spite of not having their own 

resources, thereby helping the research community at large. 

The above motivations stand good for almost any testbed federation and apply to the 

PowerCyber and DeterLab federation as well. 

  



www.manaraa.com

11 
 

CHAPTER 2 

RELATED WORK 

The purpose of this section is to discuss literature on work that has been done to achieve 

testbed federation, or which contributes to the same. 

Network Domain Federation – An Architectural View on How to Federate Testbeds 

This work [5] describes a generic approach to federating domains from a networking 

standpoint. On a broad scale, this article discusses domain federation as a model for 

establishing large-scale infrastructure for communication technologies, services and 

applications. With that said, testbed federation is used as a concrete example to display the 

architectural specifics of domain federation. 

The article addresses that the issue with testbed federation or domain federation is the 

heterogeneous nature of two or more given environments. The article refers to federation as 

not just a connection between two or more environments but as a balance between efficiency 

and fine grained management, while imposing minimum overhead. With this view, a generic 

approach is suggested for domain federation which is, in turn, used to present a concept for 

domain federation. 

The article presents domain federation in two steps –  

 Achieving Federation Connectivity 

 Enabling tools for utilizing the federation as an infrastructure 

Federation Connectivity 

Federation Connectivity is provided as a solution to the most common interconnection 

problems between two environments. Federation Connectivity aims to achieve one of the 
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main objectives of imposing minimum requirements on individual domains. The solution 

proposes to use Gateways at the border of each domain, acting as converging points and 

establish dynamic VPN links between each domain. 

The article also suggests a central federation control unit that ensures connectivity between 

the Gateways and the respective domain resources. The VPN technology allows for setting 

up a more secure overlay instead of utilizing the lesser secure network links. 

 

Figure 5 Federation Connectivity [5] 

Enabling Tools for Federation 

A federation is not complete if there are no tools/services that either leverage or enable the 

functionality of the federation. This article presents a centralized approach to federation, 

where most of the functionality is provided by the centralized control unit. The article 

addresses distributed peer-to-peer control as well, but explained that centralized approach 

would be the best method when multiple testbeds are involved since functionalities such as 
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authentication and establishment of trust might be more feasible and controllable using the 

centralized approach. 

 

Figure 6 Centrally-controlled Domain Federation [5] 

The above figure shows the proposed architecture for a federated testbed across multiple 

domains, along with the central federation control unit and its control flow across the 

domains. 

This work highlights the main issues to be addressed with regards to networking for 

federated testbeds and illustrates practical implementation with the proposed architecture. 
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An Architecture for International Federation of Network Testbeds 

This work discusses the challenges involved in International Federation [6] of networking 

testbeds and proposes an architecture based on the GENI project, which is a product of the 

US National Science Foundation. 

The paper identifies the key challenges involved in an international federation to be 

establishment of trust and user access policies while maintaining the autonomy and 

abstractions of individual testbeds. 

The paper starts off by discussing the growing need for federated networking testbeds since 

they present a platform for researchers to investigate the future of the internet architecture.  

SFA Architecture 

The paper proposes an architecture named ProtoGENI [6] which is based off the GENI 

framework. This leverages the granular “Slice-based Federation Architecture” (SFA) [7] 

which was developed by the GENI community. According to SFA, a “slice” is a partition in 

the physical facility of the testbed. Each slice can be running a different network architecture 

or experiment within it. A slice contains a set of “slivers” which could be a virtual machine, 

VLAN, virtual circuit or entire physical components (PCs, routers, switches, links, etc.). 

Each GENI facility contains an Aggregate Manger (AM) which manages all the resources or 

components in that facility. A user can create slices spanning across multiple AMs for 

experiments. There also exists a Registry which stores the mapping of resources to their 

corresponding GID. The Registry is also responsible for issuing certificates and credentials to 

entities and resources. 
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With respect to international federations, ProtoGENI consists of three entities built upon the 

GENI-based SFA – Identity Providers (IdPs), Slice Authorities (SA) and Clearinghouse 

(CH). 

IdPs provide identity to users by provisioning them with unique names and issuing user 

certificates. 

Slice Authorities are responsible for manipulating slices. They create slice names and grant 

users necessary credentials to perform actions within a slice. 

Clearinghouse is used as a mechanism to establish trust in a large-scale federation, which is 

an issue in case of an international federation of multiple testbeds. It publishes certificates of 

its own federate that are used to establish trust. It can also discover certificates of other 

federates. Discovering certificates does not mandate the Clearinghouse to trust the federate; a 

federate may choose not to trust certificates or may also trust additional certificates that are 

not present in the Clearinghouse. The Clearinghouse simply makes the process of 

establishing trust more convenient. 

  



www.manaraa.com

16 
 

 

The flow of interaction within a federation is depicted in the figure below – 

 

Figure 7 Flow of interaction in ProtoGENI Federations [6] 

Proposed Architecture for International Federation 

The proposed architecture starts off by defining an “Inter-Federation” to be a federation 

whose member are federations themselves. Utilizing the ProtoGENI architecture, the inter-

federation architecture consists of a “Global Clearinghouse”, a single Clearinghouse for the 

entire federation. 

There are two cases for establishing trust in an inter-federation –  

1. Single root of trust per federation, and 

2. Multiple roots of trust per federation 

The methods of establishing trust for each of these cases is at the will of each federate. 
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Single root of trust is easier implemented when each federate’s certificate is included in the 

Clearinghouse, indicating that trusting the Clearinghouse means trusting all the members of 

the federation. When this is not the case and there are exceptions in the trust certificates in 

the individual federates, then the multiple roots of trust scenario is the way to go. 

The paper sums up by talking about the design challenges involved in federations, especially 

with international federations, due to issues related to operational and policy autonomy that is 

required by federations from different nations. The paper goes on to highlight that the 

proposed architecture has been implemented on a dozen testbeds and the results suggest that 

it is a practical route to performing international federations. 
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CHAPTER 3 

FEDERATION ARCHITECTURE 

The federation between PowerCyber testbed and DeterLab testbed is primarily to share 

resources and to add functionality to both testbeds. The federation provides cyber-physical 

security experimentation functionality to the DETER environment and provides real-time 

networking latency between the control center and substation communication in PowerCyber 

as that in real smart grid environments, thus adding accurate measurements to the 

experiments. 

The motivations behind the federation are listed as under –  

 Using DETER to perform large-scale experiments as part of PowerCyber’s cyber-

attack assessment 

 A combination of PowerCyber’s components and DETER’s components can pave 

way to setting up a large-scale cyber-physical security testbed that can be used by the 

broader research community for remote experimentation, much like how DeterLab is 

being used today. 

DETER Federation Architecture (DFA) 

The DETER Federation Architecture [8] was designed to enable researchers to conduct 

what DETER calls “Federated Experiments”. According to DETER, a federated 

experiment enables researchers to connect two or more distinct testbeds, which may or 

may not be of the same nature, in order to share resources and run meaningful 

experiments leveraging the capabilities of these testbeds. 
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DeterLab accomplishes a federation by using what they call a ‘Fedd Client’. In a two-

way federation between two testbeds, Fedd Clients are present on either sides of the 

federation, routing traffic back and forth between the two environments and allowing 

sharing of resources.  

 

Figure 8 DETER Federation Architecture [8] 

The Fig. 8 shows what it would look like to have a federation of multiple testbeds with 

the Fedd Client being the underlying fabric of connectivity. The advantage of this kind of 

federation is that only resources that are necessary for the experiment can be shared and 

others can be cut out to avoid unwanted communication within the federated experiment. 

The DFA was used to implement the federation between PowerCyber and DeterLab by 

placing Fedd Clients in each of the environments. 

The federation was completed with three milestones along the way. 

1. Milestone 1 – Setting up communication between the two testbeds and using the 

DETER environment to route wide-area traffic from the Control Center to Substation 

2. Milestone 2 – Setting up the PowerCyber experiment within DeterLab 
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3. Milestone 3 – Designing a meaningful use-case scenario and run it on the federated 

testbed to showcase the functionality 

Milestone 1 

The first step of the federation is to ensure that there is communication between components 

in both testbeds. Once traffic can be routed through to DETER, the DETER environment can 

be used for wide-area networking fabric for the SCADA communication between the Control 

Center and the Substations. 

DETER as a wide-area networking fabric 

According to the PowerCyber setup, all components are present on the same local area 

network (LAN) which means that all communication within the environment, though using 

the real-world grid control protocols and mechanisms, is still local traffic. The unrealistic 

part of this is that the latency of communication between the control center, substations and 

the power system components is very small. In a real smart grid environment, the substations 

are laid out across different geographic locations, so the communication latencies that we see 

in PowerCyber are the ideal case and not what we see in the real-world. In order to overcome 

this, an experiment was created within DeterLab which routes control center communication 

through nodes inside the experiment and brings it back to PowerCyber’s substations. The 

architectural concept of this milestone is represented in the diagram below –  
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Figure 9 DETER as a wide-area networking fabric 

 

Fig. 9 represents that the DETER network lies between the Control Center and Substation 

communications, channeling the wide-area traffic between them, to emulate the real-world 

grid control scenario. The diagram is meant to convey that once control center sends a 

command to one of the substations, the traffic is routed to a node within DETER and routed 

through a complex network of the DETER experiment before returning back to PowerCyber 

and reaching the substation. This adds real-time latency of wide-area communication to the 

PowerCyber environment. 



www.manaraa.com

22 
 

DETER Federation Architecture (DFA) and Fedd Client 

The communication between the two testbeds was setup using the DETER Federation 

Architecture (DFA). Fedd Clients were used on either end to route traffic between the testbed 

components.  

The Fedd Client machines run Free BSD 9 OS. Each of them has two Network Interface 

Cards (NIC), one card to connect to each other through the Internet and one card to connect 

to the components of their respective environments. 

 

Figure 10 Fedd Client Machine 
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Each Fedd Client is basically part of both the internet and their respective testbeds. They talk 

to each other through the internet and set up a tunnel for the traffic flowing between the two 

testbeds. Traffic also has to be statically routed between the testbeds so the devices know 

where to send response to commands or requests. For example, the PowerCyber LAN is on 

one subnet and the DETER experiment LAN is on another subnet. When a machine in 

PowerCyber communicates with the relay asking for its status, the relay knows exactly what 

to do, but if the request has to go inside the DETER environment first and then get routed 

back to PowerCyber, then the communication has to be routed accordingly. So all traffic 

must be statically routed to the Fedd Client and then routed from the Fedd Client on the other 

end, and then return back through the Fedd Client in DeterLab to the Fedd Client in 

PowerCyber. 

Milestone 2 

This part involved getting the SCADA components of the PowerCyber testbed, i.e., the 

Control Center and Substations, to run within DETER and route the SCADA communication 

through the Fedd Client to talk to the physical system present in PowerCyber. 

Virtual PowerCyber inside DETER 

The control center and substations of PowerCyber run industry standard software that enables 

the SCADA environment. In order to get the same environment running inside DeterLab, 

images of these machines were created and packed as virtual machines. As was previously 

mentioned, DeterLab has the capability to run custom OSes or images of custom OSes on its 

nodes. So these virtual machines were made to boot on three DeterLab nodes within the 

experiment. 
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The architecture of the setup after achieving this milestone is as under –  

 

Figure 11 PowerCyber within DETER 

 

The Fig.11 describes the concept of running a SCADA environment similar to PowerCyber’s 

within DeterLab. Since the control center and substation machines within the DeterLab 

experiments are images of the actual machines within PowerCyber, they have to be 

reconfigured to suit the DeterLab environment in order to be functional. Most of these 

changes are IP-based and require changes in the IP address and the way the traffic is routed 

within the network. 
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The final architecture of the Federated Testbed is as shown below –  

 

Figure 12 Architecture of Federated Testbed 

Milestone 3 

This is the most important part of the federation. No federation is complete without the 

ability to do meaningful experiments to show the new capabilities of the federated testbed. 



www.manaraa.com

26 
 

Once the SCADA environment is setup inside DeterLab and is able to talk to the physical 

system in PowerCyber, i.e., the relays and RTDS, an attack-defense scenario was designed to 

showcase the functionality of the federated testbed. The architecture of this experiment looks 

as under –  

 

Figure 13 Experiment Architecture 

 

In the Fig. 13 above, the left part indicates the DETER environment and the right part 

indicates the ISU PowerCyber environment. As was accomplished in the previous milestones 

of the federation, PowerCyber Control Center and Substations run as nodes within the 

DeterLab experiment. The substations within PowerCyber are also interfaced with the control 

center VM running within DeterLab. As the Fig. 13 depicts, the DETER environment is 

running the SCADA system of the smart grid and PowerCyber is running a combination of 
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the SCADA system and the physical system, since some of the substations in are still part of 

the SCADA environment. 

All communication between the two environments runs through the Fedd Clients on either 

end. Each of the substations within the two environments is interfaced to the relays R1 and 

R2, which are present in PowerCyber. The RTDS simulates the power system to be used and 

the relays R1 and R2 are interfaced to the power system.  

Attacks are generated on the federated testbed to destabilize the power system and defense 

mechanisms (Intrusion Detection System and Traffic Filtering) are employed to stop the 

system from destabilizing, in the case of likely attacks. 

The scenario also contains a visualization engine running on a Google Earth frontend, to 

showcase the events happening in the federated testbed, as they occur. This visualization 

engine is useful in depicting the federated testbed as a single entity where experiments can be 

carried out. 
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CHAPTER 4 

EXPERIMENTATION 

The experiment scenario chosen to depict the functionality of a federated testbed includes a 

power system, an attack scenario and a defense mechanism to nullify the effects of the 

attacks generated on the power system. It is a classic example of a cyber-physical security 

experiment on a federated testbed. 

Physical System 

The physical system of the experiment is contained within PowerCyber and consists of an 

RTDS, which spawns the power system, and two relays which are integrated as part of the 

power system. The power system is protected by a wide-area protection scheme to keep it 

stable in the event of an anomaly. 
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Power System 

The power system spawned by the RTDS is the WECC 9-bus system shown in the diagram 

below – 

 

 

Figure 14 Physical System – WECC 9-bus model [1] 

 

The system consists of three generators, G1, G2 and G3, supplying loads at buses B5, B6 and 

B8. Virtual relays are placed in the system as breakers with the logic that they trip out 

whenever the transmission line they control get overloaded. The overload conditions can be 

defined within the RTDS. The physical relays R1 and R2 are integrated as part of the system 

– Relay R1 acts as the breaker for the transmission line between buses B5 and B7 and Relay 

R2 is present as part of the protection scheme that is employed by the power system. 
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Protection Scheme 

In real conditions, multiple events of anomaly may occur to destabilize a power system. In 

order to make the system resilient, it is necessary to protect the system from destabilizing due 

to such events. The power system in this scenario is protected by a wide-area protection 

scheme called the Recommended Action Scheme (RAS) [9]. The relay R2 is present in the 

power system as the RAS Controller which performs the function of avoiding overload 

during events of anomaly.  

 

Figure 15 9-bus model with RAS Controller 

 

Consider Fig. 15. The Relay R1 is the breaker for the transmission line between B5 and B7. 

If an event, such a cyber-attack or any natural cause, causes the relay to trip, then the line 

between B5 and B7 is removed. As a result, the line between buses B7 and B8 gets 

overloaded due to the same amount of generation by generator G2. As per the protection 
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scheme, when an event such as this occurs, the RAS controller, i.e., Relay R2 sends a 

GOOSE message to the generator G2 to ramp down its generation. When the generator 

receives this message, it ramps down the generation accordingly in order to keep the 

transmission below the threshold of the transmission line and the system stabilizes.  

Attack Scenario 

Considering the protection scheme that the power system possesses, the attack scenario 

should be such that the in spite of the protection scheme, it should be able to destabilize the 

system. There are two steps involved in the attack scenario – tripping the relay R1 and 

performing a DOS attack on the relay R2. 

Data Integrity Attack 

The data integrity attack is intended to trip the relay by fabricating a packet that instructs the 

relay to trip. The relay does not require any sort of authentication when the trip command is 

sent to it, so it is vulnerable to this kind of attack. 

When this attack targets relay R1, the relay, which is the breaker for the transmission line 

between buses B5 and B7, will trip out and cause that line to be out of the power system. 

Denial of Service (DOS) Attack 

According to the wide-area protection scheme of the power system, when a line gets tripped 

out, the RAS Controller sends a message to the generator that feeds that line, to ramp down 

its generation. However, if the RAS Controller, i.e., relay R2, is subject to a DOS attack, it 

will be unresponsive on the network and will not be able to communicate the GOOSE 

messages, thereby causing the command to never reach the generator. 
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Coordinated Attack Vector 

The attack scenario that is being implemented is what can be a called a “Coordinated Attack 

Vector”, where two parts of the system are simultaneously hit and a third event occurs in the 

system causing what is known as a “Cascaded Outage” in the power system. 

 

Figure 16 Attacking the Protection Scheme 

 

The attack scenario is started off with the data integrity attack, which trips relay R1. This 

causes the transmission line between buses B5 and B7 to be disconnected. Simultaneously, 

the relay R2 is subjected to a DOS attack so it cannot communicate to the generator G2 to 

ramp down its generation and failing it from performing its role as the RAS Controller. As a 

consequence of both these attacks, the transmission line between buses B5 and B7 is 

disconnected from the system and the generator G2 is still generating at its original capacity. 

This causes the line between buses B7 and B8 to be under overload and once the overload 
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extends a certain period of time, the breaker logic in the transmission line causes the line to 

trip out. The final consequence of this attack is that the generator G2 is isolated from the 

power system and there is a discrepancy in the frequency of operation of the power system. 

Defense Scenario 

The defense scenario is crafted to be a cyber-defense scenario and deals with the cyber-

attacks that take place on the system. The environment is equipped with what is called as 

“Perimeter Defense” mechanism, which when deployed, filters attack traffic before entering 

the PowerCyber environment. 

The Perimeter Defense mechanism is equipped with an Intrusion Detection System (IDS) 

which sets rules for whitelisted communication and a Traffic Filter which filters high 

amounts of traffic heading towards a single destination, which is what, happens during a 

DOS attack. 

The Perimeter Defense mechanism can successfully stall the Coordinated Attack Vector that 

was discussed previously. However, the IDS rules for whitelisted communication can be 

easily bypassed by mechanisms like IP spoofing. Even in that case, the Traffic Filter will 

ensure that the DOS traffic is blocked before entering the PowerCyber environment, in which 

case, even if the data integrity attack goes through, the RAS Controller will remain 

operational and the power system remains stable. 

As Fig. 17 shows, the defense mechanism is protecting the power system at the points where 

it is vulnerable and prevents any cases of outage or cascaded outage and succeeds in keeping 

the power system stable under all conditions. 
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Figure 17 Defending the RAS Controller 

 

Visualization Engine 

In a federated testbed, a lot of the events, while occurring concurrently, are not easy to 

portray. The visualization engine helps in displaying the events in the federated testbed in a 

coherent fashion. 

Every event that occurs within the federated testbed has a visual feedback on the 

visualization engine. 

Frontend 

The frontend was made on the Google Earth API. A model of the 9-bus system is mapped on 

the state of Iowa with realistic locations of generators and substations. The entire frontend 

was designed using Keyhole Markup Language (KML) [10]. The KML file consists of 
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geographic information of all objects that are mapped onto the UI. The components on the UI 

appear and disappear according to the events occurring on the Federated Testbed. For 

example, when the DOS attack initiates, a visual attack icon appears and the component 

being attacked turns into red color indicating that it is unresponsive in the system. 

Transmission lines, generators and breakers change color to indicate status. The color coding 

for the transmission lines is setup as – green for normal operation, yellow for overload and 

red for line-out. This color convention applies to most components of the UI. 

 

Figure 18 Frontend UI on Google Earth 
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Backend 

The backend architecture of the visualization is shown in Fig.19. 

The backend consists of two servers constantly polling for information and refreshing the 

KML file that displays the components in Google Earth. A python script continuously runs in 

the background, obtaining the changes in the state of the testbed components and writes them 

to a KML file at regular intervals, which is then loaded into Google Earth, so that the UI 

reflects the changes in the environment. 

 

 

Figure 19 Visualization Architecture 
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OPC Server 

The OLE Process Control (OPC) [11] server obtains the statuses of the relays inside 

PowerCyber constantly. When there is a change in the status of any of the relays (trip, close), 

the backend script, which is constantly polling the server, notices the change and writes to 

the KML file accordingly. So when a relay is tripped, the corresponding transmission line for 

which it is a breaker will turn red indicating that the line is now open. 

ZMQ Server 

The ZMQ server is used to monitor the attack and defense machines in the DETER 

environment so that whenever an attack is initiated or the defense mechanism is turned on, 

the event will be visible on the front end. What the ZMQ server does is, when an attack is 

initiated, it receives a message indicating the start of the attack and passes it on to the 

backend script, which then writes to the KML file to turn on the visibility of the attack 

objects along with the necessary color coding to indicate the initiation of the attack. 

Demonstration 

The use-case scenario described above, along with the Visualization Engine, was 

demonstrated on June 11th, 2014 at the Smart America Expo [12] held at the Washington DC 

Convention Center in Washington DC. The Smart America Challenge was a White House 

Presidential Innovation Fellow project to combine research related to Cyber-Physical 

Systems from different sectors, such as Smart Manufacturing, Healthcare, Smart Energy, 

Intelligent Transportation and Disaster Response, and to portray the benefits they serve to the 

US Economy and to the daily lives of American citizens. 
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This Federation was achieved and demonstrated as part of the “Smart Energy CPS” team at 

the Smart America Expo. Members of the Smart Energy CPS team included MITRE 

Corporation, National Instruments, NREL, North Carolina State University, Penn State 

University, Scitor Corporation, University of North Carolina (Chapel Hill) and the 

Information Sciences Institute at University of Southern California.  
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CHAPTER 5 

EXPERIMENTAL EVALUATION 

Apart from showcasing the functionality of the Federated Testbed, an evaluation was 

performed to figure out how a DOS attack from the wide-area network would propagate and 

its impact on the Federated Testbed and the relay. 

DOS Attack Evaluation 

The DOS attack that was used for the evaluation was a UDP flood originating from the 

DETER environment and targeting the relay in PowerCyber. The attack was done with 80 

byte packets and the rate of the flood was a parameter that could be changed. Each attack is 

aimed at bringing down the wide-area protection scheme of the power system by targeting 

the relay which is the RAS controller. 

For each case, the DOS attack bombarded the relay for 30 seconds and for each rate, the 

attack was repeated 10 times.  

The Fig.20 below presents a comparison of the bandwidth required to fail the protection 

scheme when the DOS attack is on PowerCyber’s local network and when it originates from 

DeterLab on the Federated Testbed. 
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Figure 20 Comparison of local DOS attack and wide-area DOS attack. (Left) DOS analysis within PowerCyber 

[1] (Right) DOS analysis on the Federated Testbed 

 

What is interesting to note here is that previous results showed that the relay shows a 100% 

failure rate when subjected to an attack bandwidth greater than two Mbps. However, those 

attacks were originated from within the local network of PowerCyber. These results show 

that a considerable amount of attack bandwidth is lost in the traversal over the wide-area 

network and hence, more bandwidth is required to fail the protection scheme in order to 

overcome the loss of packets. 

Another point of concern is that the attack bandwidth must not be very high because traffic 

traverses between the environments through the tunnel between the Fedd Clients. If the 

attack traffic is very high, there were occasions where the Fedd Client would become 

unresponsive and stall all communication between the two testbeds. 

The design of the DETER experiment is also important in terms of the location of the attack 

machine. It must have as less hops to the Fedd Client as possible so that the flood traffic does 
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not go through a large number of nodes and flood the experiment itself. In the Federated 

Testbed, the attack machine is located one hop away from the Fedd Client on the DETER 

end. 

Latency Evaluation 

For cyber-physical systems, the latency in the network is a very important since power 

system components have a very fast response and the network should support the same in 

order to conduct meaningful experiments. 

In the PowerCyber local network, the communication time between the control center, 

substation, RTDS and relays is always lesser than 1ms, which goes well with the fact that the 

response time of RTDS and relays is in the order of micro seconds. However, when it comes 

to the Federated Testbed, the latency becomes a very important factor since the 

communication has to go through the wide-area network which causes a much larger delay in 

the communication as compared to the local area communication. 

Table 1 Communication Latencies within PowerCyber and on the Federated Testbed 

Communication Components Latency within PowerCyber Latency in Federated Testbed 

Control Center to Substation <1ms 28.8ms 

Substation to Relay <1ms 66ms 

Relay to RTDS <1ms <1ms 

Since DETER nodes are laid out across a huge network of devices, the nodes within a single 

experiment may show a considerable amount of latency between each other, as in this case. 

In spite of the Control Center and the Substation being on the same network, the sheer 

complexity of the DETER network gives a communication latency of 28.8 ms. The 
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substation to relay communication shows the amount of time it takes for traffic to reach from 

the DETER network to PowerCyber through the Fedd Clients and the wide-area network. 

The latency in the case of this experiment is not a huge concern because the most important 

part of the experiment is the protection scheme of the power system and the communication 

between the RTDS and the relay takes place in the local network of PowerCyber. 

Control center-based applications such as Automatic Gain Control, can be employed in the 

Federated Testbed since the time constraints in these applications are not very tight and the 

latency of the Federated Testbed is still within the accepted range. 

The latency, however, limits the kind of experiments that can be performed on the physical 

system of the Federated Testbed. For example, with this amount of latency, we cannot have a 

physical system that is spread across between two testbeds and form a Federated Testbed 

since a communication latency of greater than 50ms is not acceptable for employing wide-

area protection schemes and state estimation based applications.  
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CHAPTER 6 

CONCLUSION 

Future Work 

 The most challenging task ahead is to have a distributed power system on a Federated 

Testbed, supported by a suitable high-speed network. This means that multiple power 

system testbeds can spawn large-scale power systems and cyber testbeds can be the 

networking fabric, thus giving cyber-physical experimentation a very realistic 

platform.  

 The federation paves way to large-scale cyber-physical security experiments. The 

huge cyber network of DeterLab can accommodate 100s of substations within its 

environment. This gives the scope for interfacing with large-scale power systems 

such as a 100-bus system, in place of the current 9-bus system, for experimental 

purposes.  

 Create realistic experiments in the smart grid environment, large-scale protection 

schemes, and large-scale cyber-attack scenarios and provide the real platform to 

understand what it is like to protect a real smart-grid environment. 

Conclusions 

 Testbed federation is a growing buzzword in today’s research community, since it 

offers a large-scale experimentation platform to researchers and also extends 

functionality of current testbeds.  

 Currently, there are very few cyber-physical experimentation testbeds and testbed 

federation could give rise to many large-scale cyber-physical environments through 
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sharing of resources. This work introduced one such environment and its 

experimental functionality.  

 Both PowerCyber and DeterLab are well known testbeds in the field of cyber-

physical experimentation and cyber-security experimentation, but this federation 

throws to light how their functionality can be taken to the next level.  

 This federation gives scope for large scale cyber-physical experimentation in the 

future. The experimental analysis performed shows how experimentation is different 

in the case of a Federated Testbed as compared to the standalone testbed.  

 It also shed light on some of the experiments which are feasible and those which are 

not feasible in this kind of an environment.  

 The future prospects of the federation hold true for any federated cyber-physical 

testbed and not just PowerCyber and DeterLab. 
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